Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Biol Macromol ; 183: 2248-2261, 2021 Jul 31.
Article in English | MEDLINE | ID: covidwho-1260750

ABSTRACT

The recent emergence of the novel coronavirus (SARS-CoV-2) has resulted in a devastating pandemic with global concern. However, to date, there are no regimens to prevent and treat SARS-CoV-2 virus. There is an urgent need to identify novel leads with anti-viral properties that impede viral pathogenesis in the host system. Esculentoside A (EsA), a saponin isolated from the root of Phytolacca esculenta, is known to exhibit diverse pharmacological properties, especially anti-inflammatory activity. To our knowledge, SARS-CoV-2 uses angiotensin converting enzyme 2 (ACE2) to enter host cells. This is mediated through the proteins of SARS-CoV-2, especially the spike glycoprotein receptor binding domain. Thus, our primary goal is to prevent virus replication and binding to the host, which allows us to explore the efficiency of EsA on key surface drug target proteins using the computational biology paradigm approach. Here, the anti-coronavirus activity of EsA in vitro and its potential mode of inhibitory action on the S-protein of SARS-CoV-2 were investigated. We found that EsA inhibited the HCoV-OC43 coronavirus during the attachment and penetration stage. Molecular docking results showed that EsA had a strong binding affinity with the spike glycoprotein from SARS-CoV-2. The results of the molecular dynamics simulation revealed that EsA had higher stable binding with the spike protein. These results demonstrated that Esculentoside A can act as a spike protein blocker to inhibit SARS-CoV-2. Considering the poor bioavailability and low toxicity of EsA, it is suitable as novel lead for the inhibitor against binding interactions of SARS-CoV-2 of S-protein and ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , Molecular Docking Simulation , Molecular Dynamics Simulation , Oleanolic Acid/analogs & derivatives , SARS-CoV-2 , Saponins , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line, Tumor , Coronavirus OC43, Human/chemistry , Coronavirus OC43, Human/metabolism , Humans , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Saponins/chemistry , Saponins/pharmacology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
2.
Acta Chim Slov ; 67(3): 949-956, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1060696

ABSTRACT

Due to the current spreading of the new disease CoViD-19, the World Health Organization formally declared a world pandemic on March 11, 2020. The present trends indicate that the pandemic will have an enormous clinical and economic impact on population health. Infections are initiated by the transmembrane spike (S) glycoproteins of human coronavirus (hCoV) binding to host receptors. Ongoing research and therapeutic product development are of vital importance for the successful treatment of CoViD-19. To contribute somewhat to the overall effort, herein, single point mutations (SPMs) of the binding site residues in hCoV-OC43 S that recognizes cellular surface components containing 9-O-acetylated sialic acid (9-O-Ac-Sia) are explored using an in silico protein engineering approach, while their effects on the binding of 9-O-Ac-Sia and Hidroxychloroquine (Hcq) are evaluated using molecular docking simulations. Thr31Met and Val84Arg are predicted to be the critical - most likely SPMs in hCoV-OC43 S for the binding of 9-O-Ac-Sia and Hcq, respectively, even though Thr31Met is a very likely SPM in the case of Hcq too. The corresponding modes of interaction indicate a comparable strength of the Thr31Met/9-O-Ac-Sia and Val84Arg/Hcq (or Thr31Met/Hcq) complexes. Given that the binding site is conserved in all CoV S glycoproteins that associate with 9-O-acetyl-sialoglycans, the high hydrophobic affinity of Hcq to hCoV-OC43 S speaks in favor of its ability to competitively inhibit rapid S-mediated virion attachment in high-density receptor environments, but its considerably low specificity to hCoV-OC43 S may be one of the key obstacles in considering the potential of Hcq to become a drug candidate.


Subject(s)
Coronavirus Infections/virology , Coronavirus OC43, Human/genetics , Hydroxychloroquine/metabolism , Point Mutation , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/genetics , Binding Sites , COVID-19/virology , Coronavirus Infections/metabolism , Coronavirus OC43, Human/chemistry , Coronavirus OC43, Human/metabolism , Humans , Molecular Docking Simulation/methods , Protein Engineering , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
3.
Molecules ; 25(11)2020 Jun 11.
Article in English | MEDLINE | ID: covidwho-981163

ABSTRACT

Flavonoids are widely used as phytomedicines. Here, we report on flavonoid phytomedicines with potential for development into prophylactics or therapeutics against coronavirus disease 2019 (COVID-19). These flavonoid-based phytomedicines include: caflanone, Equivir, hesperetin, myricetin, and Linebacker. Our in silico studies show that these flavonoid-based molecules can bind with high affinity to the spike protein, helicase, and protease sites on the ACE2 receptor used by the severe acute respiratory syndrome coronavirus 2 to infect cells and cause COVID-19. Meanwhile, in vitro studies show potential of caflanone to inhibit virus entry factors including, ABL-2, cathepsin L, cytokines (IL-1ß, IL-6, IL-8, Mip-1α, TNF-α), and PI4Kiiiß as well as AXL-2, which facilitates mother-to-fetus transmission of coronavirus. The potential for the use of smart drug delivery technologies like nanoparticle drones loaded with these phytomedicines to overcome bioavailability limitations and improve therapeutic efficacy are discussed.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus OC43, Human/drug effects , Flavonoids/pharmacology , Peptidyl-Dipeptidase A/chemistry , Pneumonia, Viral/drug therapy , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/chemistry , Betacoronavirus/chemistry , Betacoronavirus/growth & development , Binding Sites , COVID-19 , Chloroquine/chemistry , Chloroquine/pharmacology , Coronavirus Infections/genetics , Coronavirus OC43, Human/chemistry , Coronavirus OC43, Human/growth & development , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Flavonoids/chemistry , Humans , Interleukins/antagonists & inhibitors , Interleukins/chemistry , Interleukins/genetics , Interleukins/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/virology , Lung/drug effects , Lung/pathology , Lung/virology , Mice , Molecular Docking Simulation , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Phytotherapy/methods , Pneumonia, Viral/genetics , Primary Cell Culture , Protein Binding , Protein Interaction Domains and Motifs , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL